
ISRAEL J O U R N A L  OF MATHEMATICS 119 (2000), 325-348 

ISOMETRIC FACTORIZATION OF WEAKLY COMPACT 
OPERATORS AND THE APPROXIMATION PROPERTY 

BY 

ASVALD LIMA AND OLAV NYGAARD 

Department of Mathematics, Agder College 
Tordenskjoldsgate 65, ~60~ Kristiansand, Norway 

e-mail: Asvald.Lima@hia.no, Olav.Nygaard@hia.no 

AND 

EVE OJA* 

Faculty of Mathematics, Tartu University 
Vanemuise ,~6, EE-2~O0 Tartu, Estonia 

e-mail: eveoja@math.ut.ee 

ABSTRACT 

Using an isometric version of the Davis, Figiel, Johnson, and Petczyfiski 
factorization of weakly compact operators, we prove that  a Banach space 

X has the approximation property if and only if, for every Banach space 

Y, the finite rank operators of norm <_ 1 are dense in the unit ball of 
),V(Y, X),  the space of weakly compact operators from Y to X,  in the 
strong operator topology. We also show that ,  for every finite dimensional 
subspace F of •(Y, X) ,  there are a reflexive space Z, a norm one operator 
J:  Y -~ Z, and an isometry O: F ~ 14;(Z, X) which preserves finite rank 
and compact operators so tha t  T = O(T) o J for all T E F. This enables 
us to prove that  X has the approximation property if and only if the 
finite rank operators form an ideal in )42(Y, X)  for all Banach spaces Y. 
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Introduction 

Let us recall that  a linear subspace F of a Banach space E is an ideal  in E if 

F • is the kernel of a norm one projection in E*. The notion of an ideal was 

introduced and studied by Godefroy, Kalton, and Saphar in [14]. 

J. Johnson [20] proved that if X is a Banach space with the metric approx- 

imation property, then, for every Banach space Y, jc(y, X), the space of finite 

rank operators from Y to X, is an ideal in s X), the space of bounded op- 

erators from Y to X. Lima [23] has shown that the converse is true if X has 

the Radon-Nikod~m property. It is not known whether the converse is true in 

general. 

In [25], Lima and Oja proved that X has the approximation property if and 

only if ~'(Y, X) is an ideal in/(:(]I, X), the space of compact operators from Y 

to X, for all Banach spaces Y. In fact, they showed something stronger: X has 

the approximation property if (and only if) ~'(Y, X) is an ideal in ~(Y, X) for 

all separable reflexive spaces Y, or, equivalently, for all closed subspaces Y of Co. 

It is natural to ask what happens if we look at ~'(Y, X) as a subspace of 

W(Y, X),  the space of weakly compact operators from Y to X, instead of looking 

at .T'(Y, X) as a subspace of ~(Y, X). The answer to this question is the main 

result of this paper: X has the approximation property if and only if .~(Y, X) is 

an ideal in W(Y, X) for all Banach spaces Y,  which, in turn, is equivalent to the 

condition that, for every Banach space Y and every T G W(Y, X),  there is a net 
(T~) in .~(Y,X) with sup~ IITalI <_ IITII such that T~y -~ Ty for all y E Y. 

We depart from the remarkable factorization theorem due to Davis, Figiel, 

Johnson, and Petczyfiski [5] asserting that any weakly compact operator factors 

through a reflexive Banach space. In Section 1 (cf. Lemma 1.1), we make a 

quantitative change in the Davis-Figiel-Johnson-Petczyfiski construction which 

enables us to show, in Section 2, that one can factorize weakly compact op- 

erators through reflexive Banach spaces isometrically and even uniformly. In 

Theorem 1.2, we give a new characterization of the approximation property in 

terms of the Davis-Figiel-Johnson-Petczyfiski factorization. We apply these re- 

sults in Corollary 1.5 where we prove that X has the approximation property if 

and only if every weakly compact operator into X can be approximated in the 

strong operator topology by finite rank operators whose norms are at most equal 

to the norm of the weakly compact operator. 

In Section 2 (cf. Lemma 2.1), we show that on the absolutely convex weakly 

compact set that  is used in the factorization theorem of Davis, Figiel, Johnson, 

and Petczyfiski to construct the reflexive Banach space, the two norm topologies 
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coincide. (It was a part of the original construction that the two weak topologies 

coincide on the unit ball of the reflexive Banach space.) This, together with the 

quantitative modification of the Davis-Figiel-Johnson-Petczyfiski construction 

made in Section 1, leads us to an isometric version of the Davis-Figiel-Johnson- 

Petczyfiski factorization theorem (cf. Theorem 2.2). This also applies to show 

that the isometric factorization can even be uniform with respect to finite di- 

mensional subspaces in the space of weakly compact operators (cf. Theorem 2.3 

and Corollaries 2.4 and 2.5). 

We apply the uniform isometric factorization from Section 2 in Sections 3 

and 4. Our main results in Section 3 are Theorem 3.3 and Theorem 3.4. They 

characterize the approximation property of X and X* in terms of ideals of finite 

rank operators. In particular, Theorem 3.3 shows that X has the approximation 

property if and only if 9v(Y, X) is an ideal in W(Y, X) for all Banach spaces Y, 

and Theorem 3.4 shows that X* has the approximation property if and only if 

9r(X, Y) is an ideal in W(X, Y) for all Banach spaces Y. 

In Section 4, an easy example shows that it is not possible to characterize the 

compact approximation property of X by E(Y, X) being an ideal in W(Y, X) for 

all Y (although this property characterizes the compact approximation property 

for reflexive X). In Theorem 4.1, we give some conditions equivalent to/E(Y, X) 

being an ideal in W(Y, X) for all Y. We also show, by using the description of 

duals of spaces of compact operators due to Feder and Saphar [12], that these 

conditions are implied by the compact approximation property of X (cf. also 

Theorem 4.1). 

In Theorems 5.1 and 5.2 of the final Section 5, we demonstrate how the method 

of proof of Theorem 1.2 can be further developed to give alternative proofs 

(through ideals of finite rank or compact operators) for known results about 

cases when the (compact) approximation property implies the metric (compact) 
approximation property. In particular, as an immediate corollary, we obtain 

the result due to Godefroy and Saphar [15] that X* has the metric compact 

approximation property with conjugate operators whenever X* has the com- 

pact approximation property with conjugate operators and X* or X** has the 

Radon-Nikod~m property. 

Let us fix some more notation. In a linear normed space X, we denote the 

closed unit ball by Bx and the closed ball with center x and radius r by Bx(x, r). 
For a set A C X, its norm closure is denoted by A, its linear span by spanA, its 

convex hull by cony A, and the set of its strongly exposed points by sexp A. 

We shall write Ex  (resp. Wx) for the family of all compact (resp. weakly 
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compact) absolutely convex subsets of Bx.  

Isr. J. Math. 

1. Criteria of  the  approximat ion property  in terms of  the  D a v i s - F i g i e l -  

Johnson-Petczyf i sk i  factorization 

In this section, we depart from the famous Davis, Figiel, Johnson, and Petczyfiski 

factorization construction (cf. Lemma 1 on p. 313 in [5], [6, pp. 160-161], [7, 

p. 227], [33, p. 51] or Lemma 1.1 below) and apply the Grothendieck-Feder- 

Saphar description of duals of spaces of compact operators (cf. [16] or [8] and [12]) 

to obtain several conditions equivalent to the approximation property of Banach 

spaces, all of them expressed in terms of the Davis-Figiel-Johnson-Petczyfiski 

construction (cf. Theorem 1.2 below). This leads us to an interesting "metric" 

characterization of the approximation property (cf. Corollary 1.5) similar to the 

well-known characterization of the metric approximation property as the dense- 

ness of B:r(y,x) in Bs in the topology of uniform convergence on compact 

sets, for all Banach spaces Y. 

We shall need a quantitative version of the classical Davis, Figiel, Johnson, 

Petczyfiski factorization construction, which in fact consists in replacing the num- 

ber 2 in the original construction by ~ for any a > 1. We now fix the notation 

to describe the Davis-Figiel-Johnson-Petczyfiski construction, and we shall also 

use this notation in the following sections. 

Let a > 1. Let X be a Banach space and let K be a closed absolutely convex 

subset of its unit ball Bx.  For each n E N = {1, 2, . . .},  put B,~ = an/2K--k 
a-n /2Bx and denote by [I [In the equivalent norm on X defined by the gauge 
of Bn. Let [[X[[K = ( ~ = 1  I[x[[2) 1/2, X K  : {X �9 X: [[x[[ K ( o(3} and CN = 
{x �9 X: []X[]K _< 1}. Further, let Jg denote the identity embedding of XK into 

X. Finally, we put 

I ( a )  = (a n + 1)2 
n = l  

and note that f:  (1, oo) ~ N is a continuous, strictly decreasing function with 

lima,1+ f(a) = e~ and lirn~_~ f (a)  = 0. Hence, there is a unique point 

5 �9 (1, oe) such that f (5)  = 1. (A "good" estimate of this a is exp(4/9) = 

1.55962349761 ....  ) For this a, one has K c CK C B x  (this is clear from 

Lemma 1.1 below). 

The following is the classical Davis-Figiel-Johnson-Petczyfiski factorization 

lemma with some "cosmetic" changes. 
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LEMMA 1.1 (cf. p. 313 in [5]): 

(i) g C f(a)CK. 
(ii) XK is a Banach space with the closed unit ball CK, and JK �9 s  X),  

and IIJKII < U f ( a ) .  

(iii) J~* is injective. 

(iv) XK is reflexive if and only if K is weakly compact. 

Proo~ Only (i) and IIJ~ll <- 1/f(a)  in (ii) need to be verified. 

Suppose x E K. Since x �9 Bx ,  we get 

an/2x -4- a-n/2x �9 B, ,  

so that 
1 a n/2 

I1=11. -< a- /~  + a - - / ~  a n + 1 

for all n. Hence II~IIK <- f(a). This proves (i). 

Since B x  is convex and K C Bx ,  we have 

1 a ,/2 ( an/2K + a-" /2Bx)  C Bx ,  an/2 + - 

that is 

Hence 

an~2 
a '~ + 1 B ,  C Bx .  

an~2 
I lxl l .  >_ a" + 1 Ilxll 

and therefore IlxllK _> f(a)l lx l l  for all x �9 X~ ,  meaning that IIJ~ll -< 1/ f (~) .  
| 

THEOREM 1.2: For a Banach space X,  the following assertions are equivalent. 

(i) X has the approximation property. 

(ii) 2:(XK, X)  is an ideal in E(Xg,  X)  for every K E Wx .  

(iii) For every K E Wx ,  there exists a net (As) in ~ ' (Xr ,  X)  with sup~ [IAaH < 

][JK][ such that Aax---+ JKx for all x E XK. 

(iv) For every K �9 • x ,  there exists a bounded net (Aa) in .T:(XK, X)  such 

that A~x --+ Jgx  for all x E XK. 
Ct 

(v) For every K E 1Cx, there exists a net (Aa) in ffY(Xg, X) such that 

ILA~ - J,~ll ~ o. 
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Remark 1.1: Condition (v) means that Jg belongs to the norm closure of 

�9 ~ ' ( X g ,  X )  in f~(XK, X) and (iii) can be viewed as its "metric" version: J g  

belongs to the closure of the ball Y(XK,  X) M B(0, HJK[[) in the strong operator 

topology of f~(Xg, X). 

For the proofs of Theorem 1.2 and Theorem 4.1, we shall need the following 

well-known description of duals of spaces of compact operators due to Feder and 

Saphar [12]. Let us recall that if X and Y are Banach spaces, then for any 
o o  , , ,  o o  

V E X*@IrY**, v En--=lXn | Yn with  : ~ = 1  [Ix*[lilY**[[ < oo, and for any T E 

E(Y, X), the element T**v E X * ~ X * *  is defined by T**v = Y].~=I x* | 

LEMMA 1.3 (cf. [12, Theorem 1]): Let X and Y be Banach spaces such that 
X* or Y** has the Radon-Nikod2m property. Let r X * ~ Y * *  -~ f_.(Y, X)* be 

defined by 

(~v)(T) : trace(T**v), T E f~(Y,X), v E X * ~ Y * * .  

Then, for all g E IC(Y, X)*, there exists v E X*~=Y** such that g : (~v)l~z(r,x) 

and Ilall : II vll. 

The proof of Theorem 1.2, as well as some other proofs of this paper, will also 

use the following result. 

LEMMA 1.4: Let X and Y be Banach spaces. Let A be a subspace of• (Y,X)  
containing 3c(Y, X)  and let T E f(Y, X). If .4 is an ideal in s : :  span (.4 U {T}) 

and P is an ideal projection, then there exists a net (As) C .4 with sup s HAs[[ _< 

liTII such that 

y**(A*x*) | x*))(T) for all e X* and y** E Y**. 
s 

Moreover, if Y has the Radon-Nikodfrm property On particular, if Y is reflexive), 

then (As) can be chosen to satisfy 

Asy ~ Ty f o r a l l y E Y .  

Proof'. Let P be a norm one projection on/2" with kerP = .4m. Since P*(T) E 

.4•177 C/2"* and HP*(T)[I <_ IITI[, there exists a net (As) C .4 with sups ]lAsH _< 

[[TI[ such that  Am --+ P*(T) weak* in s In particular, for x* E X* and 

y** E Y**: we have 

y**(A*ax* ) = (y** | x*)(As) ~(y** | x*)(P*(T)) = (P(y** | x*))(T). 
s 

It is straightforward to verify that, for any f E s P f  is a norm-preserving 

extension of f[.a E .4". On the other hand, it is proved in [24, Lemma 3.4, (b)] 
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that y | x* E ~-(Y, X)* has a unique norm-preserving extension to the whole 

E(Y,X)  whenever x* E X* and y E sexpBy. Therefore P(y| = yQx* E E* 

and 

(A*~x*)(y)~(y| = (T*x*)(y) for all x* E X* and y E sexpBy.  

If Y has the Radon-Nikod:~m property, then Y -- s-p-~(sexpBv), and we get 

that  

(A*x*)(y)--+(T*x*)(y) for all x* E X* and y E Y. 
c~ 

This means that  A~ ~ T in the weak operator topology of E(Y, X). Since 

the weak and strong operator topologies yield the same dual space (cf. e.g. 

[9, Theorem VI.1.4]), after passing to convex combinations, we may assume that 

Aa --+ T strongly. I 

Proof of Theorem 1.2: (i) ~ (ii). Let us assume that X has the approximation 

property. We shall show that ~-(Y, X) is an ideal in s X) for any reflexive 

Banach space Y. 

Consider f E /:(]7, X)*. For g = flJ:(Y,X), let v = ~n~176 x* | y,~ E X*@,~Y 
with ~,,~ I[x~lI < ec and I]Y,~I] --+ 0 be given by Lemma 1.3. We assume that 

(K~) c 5r(X, X) converges to Ix  uniformly on the compact subsets of X. Then, 

for T E s X), 

I(g2v)(T) - f (gaT) l  = I(~pv)(T - KaT)I 
o o  

= ] E  x~((T - g~T)yn)] 
n = l  

o o  

_< sup [l(Ix - ga)(Tyn)[I E [Ix* [I --+ 0 
n c~ 

because {O, Ty l ,Ty2 , . . . }  is a compact subset of X. Since (I)v E E(Y,X)* is a 

norm-preserving extension of f ly(y,x) ,  the mapping P: E(Y, X)* -+ E(Y, X)* 

defined by 

(Pf)(T)  = limf(K,~T) = ((I)v)(T), f E E(Y,X)*, T E E(Y,X), 
c~ 

is a norm one projection with ker P = 9c(Y, X) • 

(ii) ~ (iii). This is immediate from Lemma 1.4 because XK is reflexive. 

(iii) ~ (iv). This is obvious. 

(iv) ~ (v). Let K E Ex .  Then :/K E E(XK, X) because 

JK(CK) = CK C an/2K + a- '#2Bx,  for all n E N, 
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implies that  JK(CK) has, for any e > 0, a finite e-net and therefore it is rela- 

tively compact in X. By the description of the weak convergence in spaces of 

compact operators due to Feder and Saphar [12, Corollary 1.2] (the reflexivity 

of X K  and the boundedness of (As) are used here), we get that (Ac~ - Jg )  ~ 0 

weakly in E ( X K ,  X) .  After passing to convex combinations, we may assume that  

IIA~ - Jgll -+ O. 

iv) => (i). Let K be a compact subset of X and let e > 0. We have to show 

that  there is an operator T C 9r(X, X) such that I[Tx - xll < e for all x �9 K.  

We may assume that K �9 E x  (note that, by a theorem of Mazur, the absolutely 

convex hull of a compact set in a Banach space is compact). By (v), there is 

an operator A = Zin=l y* | xi �9 J='(Xg, X)  (with y~ �9 X ~ ,  xi �9 X )  such that  

II A - J/~ll < e /2f(a) .  Since J~* is injective (cf. Lemma 1.1), J~:(X*) is norm 
n 

dense in X~.  Let x* �9 X* satisfy [lY~ - J~cx;[I < e /2 f (a )  ~~i=1 Ilxil] and let 
n , T = ~-~i=lxi | xi �9 . T ( X , X ) .  Then, for every x �9 K (recall from Lemma 1.1 

that K C f (a )CK) ,  we have 

I ITx  - z l l  = I I T J K z  - JK II 

_< IIA - Ji,:ll[Ixllg + [ITJK - AIl[Ixll g 
n 

< + ] (a ) l l  - y ; )  | x ll 
i=1 
n 

< ~ q- f (a  I[J~: x* - Yi II]lxi[I < ~ q- ~ -- e. | 
i=1 

Remark 1.2: A famous theorem due to Grothendieck [16] (cf. e.g. [26, p. 32]) 
asserts that X has the approximation property if and only if 5r(Y, X) -- K:(Y, X) 

for all Banach spaces Y. Here the "only if" part is easy and straightforward (cf. 

e.g. [26, p. 32]). The "classical" proof of the "if" part relies on Grothendieck's 

characterization of a compact set as a subset of the closed convex hull of a norm- 

null sequence (cf. e.g. [26, pp. 32-33]) which is used to construct a Banach space 

Y - -  a linear subspace of X - -  such that the formal identity map from Y into X 

is compact. The proof of the implication (v) =~ (i) above provides an alternative 

easier proof to the "if" part (where XK together with the identity map JK plays 

the role of Y). And combined together with Theorem (AP) in [25], this also gives 

an easy short proof for the classical fact (due to Grothendieck) that  X* has the 

approximation property if and only if bY(X, Y)  = E(X ,  Y)  for all Banach spaces 

Y. 

Remark 1.3: The idea to define a norm one projection with ke rP  = ~-(Y, X) • 

on/:(Y, X)* by ( P f ) ( T )  = lima f ( K ~ T ) ,  f �9  X)*, T �9 s whenever 
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Ks �9 Bj:(x,x) and Ks --+ Ix ,  is due to J. Johnson [20]. In the proof of the 

implication (i) ~ (ii), the set of operators Ks  is not necessarily bounded. 

A Banach space X has the approximation property if and only if, for every 

Banach space Y, the finite rank operators are dense in s X) in the topology T 

of uniform convergence on compact sets, and X has the me t r i c  approximation 

property if and only if the "metric" version of this condition holds: for every 

Banach space Y, the finite rank operators of norm < 1 are dense in the unit ball 

of/:(Y, X) in the topology 7 (cf. e.g. [26, pp. 32, 39]). The next result provides 

a similar "metric" criterion for the approximation property. 

COROLLARY 1.5: For a Banach space X, the following assertions are equivalent. 

(i) X has the approximation property. 

(ii) For every Banach space Y, By(v,x) is dense in Bw(v,x ) in the strong 

operator topology. 

(iii) For every Banach space Y and every T �9 W(Y, X),  there is a net (Ts) in 

:T(Y,X) with sups IlTsll < IITll such that Tsy -+ Ty for all y C Y. 

(iv) For every separable reflexive Banach space Y and every T �9 W(Y, X) there 

is a sequence (Tn) in ~'(Y, X) with sup~ []Tn[[ _< lITl] such that T~y -+ Ty 

for all y c Y. 

Proof: ( i ) ~  (iii). We may assume that ilTII = 1. Then K := T(By)  e Wx .  

Let the number a be fixed so that f(a) = 1. Then (cf. Lemma 1.1) T(By)  C 

CK = Bx~ and [[Jgi[ _< 1. By Theorem 1.2 ((i) ~ (iii)), there exists a net (As) 

in ~(XK,  X) with sups [IAsi[ _< 1 such that Asx ~ Jgx  for all x E XK. Define 

Ts: Y --+ X by Tsy = AsTy,  y c Y. Then Ts: Y --+ X is linear and of finite 

rank, Tsy -+ Ty for all y E Y, and [ITsl[ _< sup{ilTyll~c: y c By} _< 1 for all c~. 

(iii) ~ (ii). This is obvious. 

(ii) ~ (i). By Lemma 1.1, Jg C W(XK,  X) whenever K E W x  (because 

XK is reflexive). Therefore, (ii) implies assertion (iv) of Theorem 1.2, which is 

equivalent to (i). 

(iii)~(iv). Let Y be a separable Banach space and let T �9 W(Y, X). Let (y~) 

be a dense sequence in By.  By a standard argument, picking from the given 

net (Ts), for each n = 1, 2 , . . . ,  operators Tsn so that [ITs~yl - TYll[ < 1/n, ..., 

[ITsny,~ - Ty,~[I < 1/n, one obtains the desired sequence (Tn) = (Ts~). 

(iv)~(i).  Let Z be any reflexive Banaeh space and let T E W(Z, X). Recall 

that every separable subspace of Z is contained in a separable 1-complemented 

subspace Y of Z, meaning that there exists a norm one projection Py from Z 

onto Y (this so-called "separable 1-complementation property" is shared by all 
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weakly compactly generated spaces (cf. [1] or e.g. [6, p. 149])). Therefore the set 

of all triples a = (F, Y, e), where F is a finite dimensional subspace of Z, Y is a 

separable 1-complemented subspace of Z containing F,  and e > 0, is a directed 

set in the natural way. For any a = (F, Y, e), considering TIy E 14;(Y, X),  we 

choose an operator T~ C 9v(Y, X) with [[T~[[ <_ [[TiY H such that [[T~y-Ty[[ < e for 

all y E BE and let T ,  = T~oPy. Then (T,) C $'(Z, X) satisfies sup,  ]iTa]l _~ ]ITI] 

and Taz -+ Tz for all z E Z. In particular, this gives assertion (iii) of Theorem 1.2 

which is equivalent to (i). i 

Remark 1.4: Concerning the implication (i) =~ (ii) of Corollary 1.5, we note that, 

by a result due to Grothendieck [16, Corollary 2, p. 141], the approximation 

property of the dual space X* implies condition (ii) of Corollary 1.5. We are 

grateful to the Referee for pointing out this for us. Grothendieck's proof relies 

on his theorem stating that if A and B are, respectively, integral and weakly 

compact operators, then A o B is a nuclear operator with the nuclear norm not 

greater than IIBI] multiplied by the integral norm of A. 

2. U n i f o r m  i somet r ic  factorization 

The remarkable factorization theorem due to Davis, Figiel, Johnson, and 

Petczyfiski [5] asserts that any weakly compact operator T factors through a 

reflexive space. In this case, if we write T = A o B, it is clear that  the operators 
A and B are weakly compact. By a theorem of Figiel and Johnson ([13] and 

[21]), if T is a compact operator, then it admits a factorization T = A o B where 

A and B are compact. (This fact can also be deduced from the Davis-Figiel- 

Johnson-Petczyfiski theorem (cf. e.g. [19, p. 374]).) 

In Theorem 2.2 below, we shall see that the quantitative modification in the 

Davis-Figiel-Johnson-Petczyfiski construction made in Section 1, together with 

the following Lemma 2.1, leads to an isometric factorization in the Davis-Figiel- 

Johnson-Petczyfiski and the Figiel-Johnson theorems. (In particular, if I]T]I = 1, 

then ]]AII= IOBII = 1; the estimates from [33, p. 51] would give IIA[I, IIBI] _~ 4.) 

LEMMA 2.1 (Lemma 1.1 continued): 

(i) For x C K, one has 

(ii) The X-norm and XK-norm topologies coincide on K. 

(iii) The weak topologies defined by X* and X~: coincide on CK. 

(iv) CK as a subset of X is compact, weakly compact, or separable if and only 

if K has the same property. 



Vol. 119, 2000 WEAKLY COMPACT OPERATORS 335 

Proof: (i) Let x E K, x # 0. Then we have 

an/2x-b a -hI2 x E Bn, 
I1~11 

so that 

oo 1 oo a " l l ~ l l  

Ilxll~- <- ~ (a"/~ + a-"/211xll-~) 2 = Ilxll ~ (a"llxll + 1) 5" 
n=l n:l 

Let h(t) = atllxll/(atllxll + 1) ~, 1 _< t < co. The graph of h has a bell-shaped 
form and maxh(t)  = 1/4. Let k E N be such that 

h(1) ~ h(2) < - . .  < h ( k -  1) < h(k) > h ( k + l )  > . . - .  

Then 

Nxll~: < h(n) < h(k) + h(t) dt 
Ilxl l  - n = l  

1 1 f o o  du 

< 7 + ~ ]1+o,~, u--r 11(1)<11 
= 4 + ~ l + allxll - 4  + l n a "  

(ii) For x, y ~ K, we have (x - y)/2 ~ K. By (i), 

2 

This together with (ii) in Lemma 1.1 gives (ii). 

(iii) This is proved in [5]. 
(iv) This is essentially known (cf. [5] or [7, p. 228]) and follows from the in- 

clusions ( f ( a ) ) - l K  C CK C an/2K + a-n/2Bx,  for all n, and from the fact that 

CK = N,~176 e X: ~ k = l  IlXll 2 ~ 1} is closed and weakly closed. | 

THEOREM 2.2: Suppose T C E(Y,X) .  Let K = T(By(O, 1/IITII)) and let 

TK: Y --+ XK be defined by TKy = Ty, y E Y. Then T = Jg o TK and 

(i) T is separably valued, weakly compact, compact, or of finite rank if and 

only if TK has the same property if and only if Jg  has the same property. 

(ii) IITN = NTKN and IIJgll = 1 whenever f(a) = 1. 

Proof: (i) We only need to prove that the above-mentioned properties of T 

imply the same properties for T/( and Jg. Since TK is algebraically the same 

operator as T, they have the same rank and, by Lemma 2.1, (ii) and (iii), TK is 
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separably valued, compact, or weakly compact whenever T is. If T is of finite 

rank, then JK has finite rank since 
o o  

JK(BxK)  = CK C N (T(Y)  + a-n /2Bz)  = T (Y )  = T(Y) .  
n = l  

That the other properties of T imply the same properties for Jg,  is clear from 

Lemma 2.1, (iv). 

(ii) If f (a)  = 1, then IiJglI < 1 by Lemma 1.1, (ii). Without loss of generality, 

we may assume that  HTI] = 1. Since g C CK (cf. Lemma 1.1), (i), we get 

IITKI] = supyes Y IiTYiig <_ supzeg IIzIIK _< supzec,~ Hziig = 1. But then 

1 = IITII = IIJK oTKII _< IIJKIIIITKII <_ min{ilTKiI, IIJKII}. 

Therefore IITKII = IIJKII = 1. I 

By developing the method of proof of Theorem 2.2, we shall show (cf. 

Theorem 2.3 and Corollaries 2.4 and 2.5) that the isometric factorization can 

even be uniform with respect to finite dimensional subspaces in the space of 

weakly compact operators. 

THEOREM 2.3: Let F be a finite dimensional subspace of W(Y,  X) .  Then there 

exist a reflexive space Z, a norm one operator J: Z -+ X ,  and a linear isometry 

�9 : F --+ W(Y,  Z) such that T = J o ~(T)  for all T E F. Moreover, 

(i) Z = XK and J = Jg  for some K C W x  whenever the number a is fixed so 

that f (a)  = 1, 
(ii) T is compact i f  and only i f  ~(T)  is compact, 

(iii) T has finite rank if and only if  ~(T)  has finite rank. 

Proof: Let K = c-b--fiV{Ty: T C BF and y E By}. Then K is a weakly closed 

absolutely convex subset of B x .  We shall use Grothendieck's lemma (cf. e.g. [7, 

p. 227]) to show that K is weakly compact. For given e > 0, let {T1,...  ,Tn} be 

an e/2-net of BF. Let Ke be the closed convex hull of the weakly compact set 

TI(By)  U . . .  tO Tn(By).  By the Krein-Smulian theorem, Ke is weakly compact. 

Since K C Ke + eBx ,  the weak compactness of K follows from Grothendieck's 

lemma. 

Choose a such that f (a) = 1. Put Z = XK, J = Jg ,  and define ff~: F- -+  

W(Y,  Z) by ~(T)y  = Ty, y E Y.  Then Z is reflexive (since K is weakly compact), 

r is linear, and T = J o ~(T) for all T E F. As in the proof of Theorem 2.2, we 

show (i) and (ii), and we also obtain that II~(T)]I = 1, whenever ]ITll = 1, and 

that  Iigi] = 1. I 
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Remark 2.1: The proof of Theorem 2.3 shows how norm compact sets in the 

space of weakly compact operators can be uniformly and isometrically factorized. 

COROLLARY 2.4: Let F be a finite dimensional subspace o f W ( X ,  Y). Then there 

exist a reflexive space Z, a norm one operator J: X -+ Z, and a linear isometry 

r F --+ W(Z,  Y)  such that T = O(T) o J for all T E F. Moreover, 

(i) T is compact if  and only if(I)(T) is compact, 

(ii) T has finite rank if and only if(I)(T) has finite rank. 

Proo~ Let us consider the finite dimensional subspace G = {T*: T E F}  of 

W(Y*,  X*). By Theorem 2.3, there exist a reflexive space Z, a norm one operator 

I: Z* --+ X*, and a linear isometry ~: G -+ W(Y*, Z*) so that T* = I o ~(T*)  

for all T E F.  Put  J = I*lx and define (I)(T) = (~(T*))* for T C F.  Since 

T**Ix = T whenever T E F,  we have T = (I)(T) o J and (I)(T) E W ( Z , Y )  for all 

T e F.  Moreover, []~(T)I [ = [[(~(T*))*[] = I[k~(T*)[I = IIT*II = HTI[ for T e F.  

The linearity of �9 and properties (i) and (ii) are also clear from the definition of 

(I). Finally, it is easily seen that [[J[] = 1. | 

Corollary 2.4 will be applied in the next section to prove that  9r(Y, X) is 

an ideal in W(Y, X)  for all Banach spaces Y whenever X has the approximation 

property. We conclude this section with an immediate corollary from Theorem 2.3 

and Corollary 2.4. 

COROLLARY 2.5: For every finite dimensional subspace F of W(X ,  Y), there 

exist reflexive spaces Z and W, norm one operators J: X -~ Z and I: W ~ Y,  

and a linear isometry ~b: F --+ W(  Z, W) such that T = I o r o J for all T E F. 

3. The approximation property and ideals of  finite rank operators 

In this section, our main objective is to prove that a Banach space X has the 

approximation property if and only if j r (y ,  X) is an ideal in W(Y, X)  for all 

Banach spaces Y (see Theorem 3.3 below which also lists other criteria of the 

approximation property in terms of ideals of finite rank operators). In fact, we 

have already proved (see Theorem 1.2 and the proof of its implication (i)=v(ii)) 

that X has the approximation property if and only if $'(Y, X) is an ideal in 

W(Y, X)  for all reflexive Banach spaces Y. The next result extends this assertion 

from reflexive spaces to all Banach spaces. 

THEOREM 3.1: Let X be a Banach space. Then 3v(Y,X) (resp. ?:(Y,X)) is an 

ideal in W(Y,  X)  for all Banach spaces Y if and only if :~(Z, X)  (resp. 1C(Z, X ) )  

is an ideal in W(  Z, X)  for all reflexive spaces Z. 
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The proof of Theorem 3.1 will use the uniform isometric factorization of weakly 

compact operators from Section 2 and the following alternative characterization 

of ideals (proved e.g. in Lima [23], Fakhoury [11], and Kalton [22]). 

THEOREM 3.2: Let F be a closed subspace of a Banach space E.  The following 

statements are equivalent. 

(i) F is an ideal in E.  

(ii) F is locally 1-complemented in E,  i.e. for every finite dimensional subspace 

G o r E  and for a l l e  > O, there is an operator A: G -~ F such that 

I i A i i < l - t - e a n d A x - - x f o r a l l x E G M F .  

Remark 3.1: It is straightforward to verify that the condition A x  = x for all 

x E G M F in Theorem 3.2 can be replaced by IiAx - xlI <_ e for all x E BGnF. 

Let us recall that, for a linear subspace F of a Banach space E (as it is clear 

from the definition of the ideal), F is an ideal in E if and only if F is an ideal in 

E. 

Proof  of  Theorem 3.1: We shall first consider the case of ideals of compact 

operators. Let K:(Z, X) be an ideal in I/V(Z, X) for all reflexive Banach spaces Z. 

For a Banach space Y, let G be a finite dimensional subspace of W(Y, X) and 

let e > 0. By Corollary 2.4, we can find a reflexive space Z, a norm one operator 

J: Y -+ Z, and an isometry �9 taking G into V(Z,  X) and preserving compact 
operators such that T = (~(T)oJ for T C G. By Theorem 3.2, there is an operator 

A: (P(G) -+ ]C(Z, X) which "locally 1-complements" K:(Z, X) in W(Z, Z) .  Then 

B: G --+ K:(Y, X) defined by B(T)  = A ( ~ ( T ) ) o J ,  T C G,"locally 1-complements" 

]C(Y, X) in 1/V(Y, X). This proves the claim about compact operators. 

Now, if .T'(Z, X) is an ideal in W(Z, X) for all reflexive spaces Z, then, as we 

mentioned above, X has the approximation property. Consequently, .T'(Y, X) -- 

]~(Y, X) for all Banach spaces Y (cf. e.g. Remark 1.2). Therefore, by the first 

part of the proof, ~(Y, X) is an ideal in W(Y, X) for all Banach spaces Y. I 

Remark 3.2: The assertion of Theorem 3.1 concerning ideals of finite rank 

operators can also be proved similarly to the case of ideals of compact opera- 

tors in Theorem 3.1, using that the isometry from Corollary 2.4 preserves finite 

rank operators. However, in this case, one should apply Remark 3.1 and notice 

that the condition from Remark 3.1 works also for subspaces F which are not 
necessarily closed. 

In the next result, we summarize criteria of the approximation property 
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expressed in termes of ideals of finite rank operators obtained in this paper and 
in the paper [25] by Lima and Oja. 

THEOREM 3.3: Let X be a Banach space. The following statements are 

equivalent. 

(i) X has the approximation property. 

(ii) Jr(Y,X) is 
(iii) jr(Y,X)is 
(iv) Jr(Y,X)is 
(v) Jr(V,X)is 
(vi) Jr (Y ,x )  is 

(vii) $'(Y,X) is 

an ideal in W(Y, X)  for all Banach spaces Y. 

an ideal in W(Y,  X)  for all separable reflexive Banach spaces Y. 

an ideal in W(Y,  X)  for all closed subspaces Y C co. 

an ideal in IC(Y, X)  for all Banach spaces Y.  

an ideal in/(:(]I, X)  for all separable reflexive Banach spaces Y.  

an ideal in/C(Y, X) for all closed subspaces Y C Co. 

Proo~ The equivalence (i) r (ii) has just been proved above. The implications 

(vi) ~ (i) and (vi i )~  (i) are proved in [25, Theorem 5.1]. The other required 
implications (e.g. (ii) ~ (v) =~ (vi) & (vii)) are obvious. II 

In the paper [25] by Lima and Oja, it was proved that interchanging the roles 

of X and Y in statements (v), (vi), and (vii) of Theorem 3.3 gives conditions 
equivalent to the approximation property of X*. This result will be used and 
extended in the following symmetric version of Theorem 3.3. 

THEOREM 3.4: The following statements are equivalent: 

(i) X* has the approximation property. 

(ii) Jr(X, Y) is an ideal in W(X ,  Y) for all Banach spaces Y. 

is an ideal in W(X ,  Y) for all separable reflexive Banach spaces 

(iv) is an ideal in W(X ,  Y)  for all closed subspaces Y C co. 

(v) is an ideal in K~(X, Y) for all Banach spaces r .  

(vi) is an ideal in ]C(X, Y)  for all separable reflexive Banach spaces Y. 

(vii) jr(X, Y) is an ideal in K:(X, Y) for all closed subspaces Y C co. 

Let us recall that, by a fundamental result due to Grothendieck [16] (cf. e.g. 
[26, p. 33]), X* has the approximation property if and only if Jr(X, Y) -- K:(X, Y) 
for all Banach spaces Y. 

In the proof of Theorem 3.4, we shall need the following symmetric version of 
Theorem 3.1. 

THEOREM 3.5: Let X be a Banach space. Then Jr(X, Y) (resp. /C(X, Y))  is an 

ideal in W(X, Y) for all Banach spaces Y if and only if jr(X, Z) (resp. /C(X, Z)) 

is an ideal in W ( X ,  Z) for all reflexive Banach spaces Z. 

(iii) jr(X, Y) 

Y. 
.~(X,Y)  

Y:(X, Y)  
Yr(X,Y) 
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Proos The case of compact operators can be proved as in Theorem 3.1 by 

applying Theorem 2.3 instead of Corollary 2.4. 

Let $-(X, Z) be an ideal in W(X, Z) for all reflexive spaces Z. Then, by the 

natural isometry T --+ T'Ix between W(Z*,X*) and W(X,Z), we have that 

9v(Y, X*) is an ideal in W(Y, X*) for all reflexive Banach spaces Y, meaning that 

X* has the approximation property. Therefore, as we recalled above, ~(X, Y) = 

E(X, Y) for all Banach spaces Y. And the already proved case of compact 

operators implies that ~(X, Y) is an ideal in W(X, Y) for all Banach spaces Y. 
| 

Proof of Theorem 3.4: The equivalence ( i ) ~  (ii) is clear from Theorem 3.5 

and its proof. The implications (v i )~  (i) and (vi i )~ (i) are proved in [25, 

Theorem 5.2], and the other required implications are obvious. | 

4. The  compact approximation property and ideals of compact 
operators 

Replacing the finite rank operators by compact operators gives the definition of 

the compact approximation property: one says that a Banach space X has the 

compact approximation property (resp. the metric compact approxima- 
tion proper ty)  if Ix belongs to the closure of ~(X, X) (resp. Bpc(x,x)) with 
respect to the topology of uniform convergence on compact subsets in X. It is 

known that even the metric compact approximation property does not imply the 

approximation property [32]. 

By the previous section, X has the approximation property if and only if 

$'(Y, X) is an ideal in W(Y, X) for all Banach spaces Y. We shall show that one 

can replace finite rank operators by compact operators in the "only if" part of 

this characterization (cf. Theorem 4.1), but one cannot do this in the "if" part 

(cf. the following example). 

Example: There is a Banach space X without the compact approximation 

property such that t:(Y, X) - W(Y, X) (i.e. ~(Y, X) is trivially an ideal in 

W(Y, X)) for all Banach spaces Y. 

Let X be a closed subspace of ~1 without the compact approximation property 

(cf. [31] or e.g. [27, p. 107]). If T E W(Y,X) for a Sanach space Y, then by 

the Eberlein-Smulian theorem and the Schur property of gl, it follows that T is 
compact. 
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THEOREM 4.1: Let X be a Banach space and let the number a be fixed so that 

f (a)  = 1. The following assertions are equivalent and they hold whenever X has 

the compact approximation property. 

(a) ]C(Y, X)  is an ideal in W(Y, X)  for all Bauach spaces Y. 

(b) /C(Y, X)  is an ideal in W(Y, X)  for all separable reflexive Banach spaces Y. 

(c) ]C(XK, X)  is an ideal in span(]C(Xg, X)  U {JR))  for every K E Wx .  

(d) For every Banach space Y and every T E W(Y, X),  there is a net (T~) in 

K~(Y, X) with sups [IT~i[ <_ IITI[ such that T , y ~  Ty for all y E Y. 

(e) For every separable reflexive Banach space Y and every T E W(Y, X), there 

is a sequence (Tn) in ~ ( Y , X )  with suPn I]T,~II _< IIT[I such that T,~y~ Ty 

for all y E Y. 

(f) For every K E Wx ,  there is a net (As) in B;c(xK,x) such that Asx  ~ JKX 
S 

for all x E XK. 

Proo~ The implications (a) ~ (b), (a) ~ (c), and (d) ~ (f) are obvious. The 

implications ( c ) ~  (f) and (b)=v (e) are immediate from Lemma 1.4 (for (b)::~ 

(e), one should also use the standard argument from the proof of (iii) ~ (iv) in 

Corollary 1.5). The proofs of (e) ::~ (f) and (f) ::v (d) are essentially the same as, 

respectively, the proofs of (iv) ~ (i) and (i) =~ (iii) in Corollary 1.5. 

(f) :=~ (a). We shall apply Theorem 3.2 together with Remark 3.1 to show 

that ]~(Y, X)  is an ideal in W(Y, X).  Let G be a finite dimensional subspace 

of W(Y, X) and let e > 0. By Theorem 2.3, there exist K E )4;x and a lin- 

ear isometry (I): G --~ W(Y, XK) preserving compact operators such that T = 

J~: o (I)(T) for all T E G. Let a net (As) in BtC(xK,x) satisfy I](A~ - JK)x]l-+0 
S 

for all x E XK. Since {ff)(T)y: T E BGn~(Y,X), Y E By}  is a relatively compact 

subset of XK, there is an a so that II(A~ -JK)~(T)yl]  ~_ c for all T E BGng(Y,X) 

and y E By.  This means that IIA~ o (I)(T) - TIt _< e for all T E BGntz(Y,X). And 
denoting A(T) = As o (I)(T), T E G, we get an operator A: G -+ /E(Y, X) as 

desired. 

Finally, let us assume that X has the compact approximation property. Re- 

placing 9r(Y, X) by/C(Y, X) and $'(X, X) by/C(X, X) in the proof of the impli- 

cation (i) ::~ (ii) of Theorem 1.2 shows that/E(Y, X) is an ideal in W(Y, X) for 

any reflexive Banach space Y. I 

Remark 4.1: Since X K is reflexive whenever K E Wx,  Theorem 3.1 immediately 

follows from Lemma 1.4 and the implication (f) =v (a) of Theorem 4.1. However, 

the proof of Theorem 3.1 we gave in Section 3 is easier and more direct. 
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Remark 4.2: As we saw above, jc(y, X) is an ideal in IF(Y, X) for all Banach 

spaces Y whenever there exists a number a > 1 so that  Jc(XK, X)  is an ideal in 

IF(XK, X)  for all K E IFx.  By Theorem 4.1, (c)=~(a), the similar assertion for 

compact operators holds for the number a for which f(a) = 1. 

We say that  a Banach space X has the weakly  c o mp a c t  a p p r o x i m a t i o n  

p r o p e r t y  if I x  belongs to the closure of IF(X, X) with respect to the topology 

of uniform convergence on compact subsets in X. This notion was considered 

by Reinov [30] and by Grcnbaek and Willis [17]. Note that Astala and Tylli [2] 

use this notion when I x  belongs to the closure of IF(X, X) with respect to the 

topology of uniform convergence on weakly  compact subsets in X. 

COROLLARY 4.2: The assertions of Theorem 4.1 are equivalent to the compact 

approximation property of X whenever X has the weakly compact approximation 

property. 

Proo~ Let K E ]Ex, let r > 0, and choose T E IF(X, X) such that [[Tx - xl[ < 

e/2 for all x E K.  By assertion (d) of Theorem 4.1, there is a bounded net 

(Ta) in ]~(X, X) such that Tax -+ Tx for all x E X. By compactness of K,  

supxeg ][Tax - Tx[[ -+ 0 and therefore supxeg []Tax - xH < r for some a. I 

Remark 4.3: Corollary 4.2 applies, in particular, to Banach spaces X which 

are reflexive. However in this case, the assertions of Theorem 4.1 are equivalent 

to the metric compact approximation property of X and also to the fact that  

~(X,  X) is an ideal in IF(X, X) (eft [23, Theorem 14]). 

COROLLARY 4.3: Let X be a Banach space and let the number a be fixed so 

that f (a)  = 1. The following assertions are equivalent and they hold whenever 

X* has the compact approximation property. 
(a) /E(X, Y) is an ideal in W(X ,  Y) for all Banach spaces Y. 

(b) IE(X, Y)  is an idea/ in W(X,  Y) for all separable reflexive Banach spaces 

Y. 

(c) For every Banach space Y and every T E W(X ,  Y), there is a net (Ta) in 

lC(X,Y) with supa I[Ta[I _< []T[I such that T~y*--+ T'y* for all y* E V*. 
a 

(d) For every separable reflexive Banach space Y and every T E IF(X, Y), there 

is a sequence (T.) in Y) with sup. IIT.II < IITll such that T'y* .-2 T'y* 
for all y* E Y*. 

Proof." We shall use the natural isometry T --+ T ' I x  between W(Z*, X*) and 

IF(X, Z) for reflexive Banach spaces Z. By this isometry, ]C(X, Y) is an ideal in 
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)/Y(X, Y) for all reflexive Banach spaces Y if and only if 1C(Y, X*) is an ideal in 

1/Y(Y, X*) for all reflexive Banach spaces Y. Applying Theorems 3.5 and 3.1, this 

yields the equivalence of (a) to condition (a) of Theorem 4.1 for X*. Furthermore, 

by the same isometry, (b) and (d) are respectively equivalent to conditions (b) 

and (e) of Theorem 4.1 for X*, (c) implies condition (d) of Theorem 4.1 for 

X* which, in its turn, implies the particular case of (c) where Y is assumed to 

be reflexive. Hence, by Theorem 4.1, (c)~(a)r (b)r (d), the last equivalent 

conditions hold whenever X* has the compact approximation property, and they 

imply the particular case of (c) with reflexive Y. To finish the proof, we have 

to show that this particular case of (c) actually implies (c). Let Y be a Banach 

space and let T E ~4;(X, Y). Let K, YK, TK, and JK be as in Theorem 2.2. Since 

K is weakly compact, YK is reflexive. Hence, for TK E )/Y(X, YK), there is a net 

(S~) in ]C(X, YK) with sups IISalI < IITKII = [ITII such that S'z* ~ T~:z* for all 

z* �9 Y/~. Since I[Jgll = 1, the net Tc, = JK o Sc~ clearly satisfies what is needed. 

5. From approximation properties to metric approximation properties 

We would like to demonstrate how the method of proof of Theorem 1.2 can be 

further developed to give alternative proofs for known results about cases when 

the (compact) approximation property implies the metric (compact) approxima- 

tion property. (Note that the following results could have been obtained already 

in Section 1, but by their nature, they fit more properly to conclude this paper.) 

The dual space X* of a Banach space X is said to have the compact approx- 
imation property with  conjugate  opera tors  if Ix .  belongs to the closure 

of {K*: K e ]C(X, X)} with respect to the topology of uniform convergence on 

compact subsets of X*. By an example due to Gr0nbmk and Willis [17], the 

compact approximation property of X* does not imply the compact approxima- 
tion property with conjugate operators. Moreover, Casazza and Jarchow [3] have 

shown that there is a Banach space X failing the metric compact approximation 
property such that all its duals X*, X**, ...  have the metric compact approxi- 

mation property. Let us recall that if X* has the approximation property, then 

X* has the approximation property with conjugate operators (this is clear from 

the local reflexivity principle). 

The following two results will explain surprisingly well why, in certain impor- 

tant cases, the (compact) approximation property implies the metric (compact) 

approximation property. 

THEOREM 5.1: Let X and Y be Banach spaces such that X* or Y** has the 
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Radon-Nikodfrm property. If  X* has the compact approximation property with 

conjugate operators, then K:(Y, X)  is an ideal in s X)  with an ideal projection 

P such that 

P (y** |174  for allx* E X *  andy** cY**.  

Proof'. We assume that (K*) with Ka C/C(X, X) converges to Ix .  uniformly 

on compact subsets of X*. Similarly to the proof of Theorem 1.2, we can define 

an ideal projection P by 

(,) (Pf)(T) = l imf(TKa),  f E s T E f_.(Y,X) 
o t  

In particular, for f = y** | x* and T C s X), this implies 

(P(y'* | x*))(T) = limy**(K~T* x ' )  = y**(T* x ' )  = (y** | x*)(T). 

THEOREM 5.2: Let X be a Banach space. The following statements are 

equivalent. 

(a) X* has the metric compact approximation property with conjugate 

operators. 

(b) For all Banaeh spaces Y, IC(Y, X)  is an ideal in s X)  with an ideal 

projection P such that 

P(y ** | x*) -- y ** | x* for a l l x * E X *  andy** cY**. 

(c) /C(X, X) is an idea/in span (/C(X, X)U {I}) with an ideal projection P such 

that 

P(x** |174  forallx* E X *  andx**EX**.  

Proof: (a) ~ (b). Let (K~,) be a net in Btc(x,x) such that K~x* --+ x* for all 

x* C X*. Applying a well-known result due to J. Johnson [20], by passing to a 

subnet of (Ka), one can define an ideal projection P by (*). As in the proof of 

Theorem 5.1, we have P(y** | x*) = y** | x* for all x* E X* and y** E Y**. 

(b) ~ (c). This is obvious. 

(c) ~ (a). By Lemma 1.4, there exists a net (Ks) in Btc(x,x) such that  

x**(g* x*) ~ P(x** | x*)(Ix)  = (x** | x*)(Ix) : x**(x*) 
c~ 

for all x* E X* and x** E X**. Thus K* --+ Ix .  in the weak operator topology 

of s X*). Since the weak and strong operator topologies yield the same dual 

space, after passing to convex combinations, we may assume that K~ -+ Ix* in 

the strong operator topology. I 
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As an immediate corollary of Theorems 5.1 and 5.2, we obtain the following 
result due to Godefroy and Saphar [15]. 

COROLLARY 5.3 (cf. [15, Corollary 1.6]): Let X be a Banach space such that 

X* or X** has the Radon-Nikodfrm property. If X* has the compact approx- 

imation property with conjugate operators, then X* has the metric compact 

approximation property with conjugate operators. 

Remark 5.1: The original proof of Corollary 5.3 due to Godefroy and Saphar 

[15] was also based, like ours, on Lemma 1.3, but by using the local reflexivity 
principle, it was modeled after Grothendieck's classical proof in [16]. Another 
proof of Corollary 5.3 (under the assumption that X* has the Radon-Nikod~m 
property) is given by Cho and Johnson [4] by an adaption of the alternative proof 

due to Lindenstrauss and Tzafriri [26, pp. 39-40]. 

The similar argument as in Theorem 5.2 yields the next result. 

THEOREM 5.4: Let X be a Banach space. The following statements are 

equivalent. 

(a) X has the metric compact approximation property. 

(b) For all Banach spaces Y, /~(Y, X) is an ideal in s X) with an ideal 

projection P such that 

P ( y | 1 7 4  forallx* EX* andyE  Y. 

(c) ~(X, X) is an ideal in span (/E(X, X) U {I}) with ideal projection P such 

that 

P ( x | 1 7 4  forallx* EX* a n d x E X .  

The equivalence (a) ~ (c) of Theorem 5.4 is contained in [10, Proposition 4]. 

An immediate corollary of Theorem 5.4 and Lemma 1.4 is the following result 
due to Lima [23]. 

COROLLARY 5.5 (of. [23, Theorem 14]): Let X be a Banach space with the 
Radon-Nikody, m property. X has the metric compact approximation property if 

and only if/C(X, X)  is an ideal in span (/C(X, X) U {I}). 

Theorems 5.2 and 5.4 remain valid for the metric approximation property if 

one replaces/(:(II, X) by 5r(Y, X) and/C(X, X) by 5r(X, X) (this is clear from 

the proofs). Therefore we have the following modifications of Corollaries 5.3 and 

5.5. 
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COROLLARY 5.6 (cf. [8, p. 246]): Let X be a Banach space such that X* or X** 

has the Radon-Nikod~m property. If  X* has the approximation property, then 

X* has the metric approximation property. 

COROLLARY 5.7 (cf. [23, Theorem 13]): Let X be a Banach space with the 

Radon-Nikodfzm property. X has the metric approximation property if  and only 

if Jr(X, X)  is an ideal in span (Jc(X, X) t3 {I}). 

There are several important results on the (metric) approximation property for 

which it is not known whether or not they hold in the case of the (metric) compact 

approximation property. For instance, it is known, as we already mentioned 

above, that  the (metric) approximation property for X* implies the same for X. 

Casazza and Jarchow [3] have shown that this is not true for the metric compact 

approximation property, but it seems to be an open question whether or not 

this is true for the compact approximation property. It is not known whether 

Corollary 5.3 remains true if X* has the compact approximation property (and 

not necessarily the compact approximation property with conjugate operators) 

(this question was posed by Godefroy and Saphar in [15]). It is known that  

the metric approximation property is separably determined: X has the metric 

approximation property whenever every separable subspace is contained in a 

separable subspace of X with the metric approximation property. In [28] (see also 

[29]), similar results were shown for the metric approximation property having 

some special geometric features (like unconditionality.). We do not know whether 

these results hold for the metric compact approximation property. 
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